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Abstract

This paper consists of three parts. In the first part we present diffusion and partition coefficients of proteins in agarose that
were measured with gel permeation chromatography. In the second part we present a partition model which includes the
effects of solute concentration and of cosolutes. In the third part we modify and extend Ogston’'s diffusion equation to
account for the effects of solute and fiber flexibility, solute concentration and cosolutes. We find good agreement between the
proposed models and data from the literature. [0 2000 Elsevier Science BV. All rights reserved.
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1. General introduction

Partitioning and diffusion of large molecules in
fibrous structures is important in several applications
such as gel permeation chromatography, controlled
drug release, ultrdfiltration and electrophoresis. In
this paper we examine these phenomena in three
parts. In the first part we present measurements with
gel permeation chromatography. In the second part
we present a new partition model of which Ogston’s
partition equation is a limiting case. In the third part
we present an extension of Ogston’s diffusion model
and a comparison of Ogston’s partition and diffusion
models with data collected from the literature. The
extensions that we propose include the effects of
solute and fiber flexibility, of solute concentration
and of cosolutes. The new equations are not re-
stricted to systems with fibrous structures but can be
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applied to systems with relatively large elements,
such as two phase systems with proteins and micelles
or biological systems such as blood.

2. PART 1. Chromatographic measurement
2.1. Introduction

Diffusion and partition coefficients of proteins in
gels can be measured by various methods, among
them are ultréfiltration, fluorescence recovery after
photobleaching and gel permeation chromatography
(GPC). In GPC the retention time of a peak depends
on the partition coefficient of the protein in the gel.
The peak broadness depends, among other things, on
the diffusion coefficient of the protein in the gel. In
order to extract these coefficients from the ex-
perimental data a model is needed to describe the
process taking place in the column. Chromatography
is a commonly used technique for measuring parti-
tioning and diffusion coefficients; it is not restricted
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to gel permeation chromatography. The experimental
procedures and the models that are used differ
dlightly from author to author. Here we present our
model and our measurements of partition and diffu-
sion coefficients of proteins in a gel with ion-ex-
change groups, under non-binding conditions.

2.2. Experimental method

Q-Sepharose FF is an agarose based ion-exchange
gel that was obtained from Pharmacia Biotech
(Uppsala, Sweden), it has a mean particle diameter
of 96 pm. Bovine serum abumin (BSA) was ob-
tained from Boehringer Mannheim (how a part of
Roche, Basal, Switzerland) (735108), other proteins
were obtained from Sigma Chemicals (Zwijndrecht,
The Netherlands): ovalbumin (A5503), cytochrome c
(C2037), lysozyme (L6876) and y-globulin (G5009).
Important parameters of these substances can be
found in Table 1. The experiments were performed
on an FPLC system from Pharmacia Biotech which
included an XK16 column (1.58 cm ID, 10.55 cm
bed length), aV7 valve for sample injection, a P500
pump, a UV-MII UV monitor and a conductivity
monitor (18-1104-39). The experiments were per-
formed at room temperature (22°C).

We performed pulse response measurements with
these proteins in the Q-Sepharose FF column. In
order to measure the effect of axial dispersion on the
peak broadness we also performed experiments with
sodium chloride pulses. The buffer that we used for
elution and for dissolving the proteins was an acetic
acid/ acetate buffer with an acetate concentration of 1
mol /I and a pH of 4.4. In this buffer no binding of

Table 1

Parameters in and results of the gel permeation experiments. The
molecular weights and diffusion coefficients were obtained from
[1] and [2], the Stokes radii were calculated from the diffusion

coefficients with: rg .. = RT/67N,nD,
Species M,, 10122DO Fookes K D/D,
[9/mol] [m™/s]  [A] -1 [

NaCl 585 1610 0.86 0.53
Cytochrome c 12 300 130 16.6 064 021
Lysozyme 14 300 113 191 0.63 0.22
Ovalbumin 43 500 73 29.6 0.62 0.18
BSA 66 270 59 36.6 059 016
~v-globulin 169 000 41 52.7 047 015

the proteins to the adsorbent occurred. The pulses
were introduced into the feed of the column with an
injection valve and an injection loop of 0.5 ml. The
protein concentration in the injected pulses was 10
g/l. In the experiments with sodium chloride we
used an elution buffer with 0.02 mol/l sodium
chloride and a pulse with 1 mol/l sodium chloride.
The flow through the column was varied between 0.1
and 4 ml/min. At the outlet of the column the
conductivity and the UV-adsorption at 280 nhm were
measured.

In atypical experiment the buffer was continuous-
ly passed through the column. Then the injection
loop was filled with the protein solution and the
injection valve was switched to introduce the pulse
into the feed. Finally the elution profile was mea-
sured at the outlet of the column.

2.3 Modding

We assumed that the column could be represented
by a large number of tanks in series with each
“tank’ consisting of an ideally mixed mobile liquid
part with holdup & and an ideally mixed stagnant
part. Mass transfer was modeled with the Linear
Driving Force (LDF) modél; it was shown by Vonk
[3] that this works well for gel permeation chroma-
tography modeling. In the LDF model it is assumed
that mass transfer occurs through two films in series:
the liquid film with mass transfer resistance 1/k,, and
the particle film with resistance 1/k,. The mass
balance for the two parts of each ‘‘tank’” then
becomes:

Jac 1- & Vsup

R MT+‘9ILtank(Cin—C)
iq
o =MT
MT=— (2 +5) "k
=4,k Tk) Ke—a
. DD, )
kp—S’lpﬁod—p
D
k =sh
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For the Sherwood number on the particle side (Sh,)
we took a value of 10. For the Sherwood number on
the liquid side (Sh,) we used an equation given by
Wilson and Geankoplis [4]. The equation given by
Pfeffer [5] is similar and gives amost the same
results. In the case of proteins the main resistance to
mass transfer is located in the particle film.

2.4. Results and discussion

We did not succeed in measuring the mobile liquid
holdup in the column, therefore we assumed a value
of 0.37. The number of tanks is representative for the
axial dispersion. To calculate this number we used
the extrapolated point (¢) at zero velocity in Fig. 3,
at this point the peak broadness is thought to be only
affected by axial dispersion. We found a number of
275 tanks. With a bed length of 10.55 cm and a
particle diameter of 96 wm this gives each tank a
length of about 4 particle diameters.

The partition coefficient, K, of each solute was
fitted with the breakthrough time of the peaks; the
retardation coefficient, D/D,, was fitted with the
peak broadness. The results of the experiments can
be found in Figs. 1-3 and Table 1.

The value for D/D, for NaCl may seem a little
small but there is a large uncertainty in this value
because the broadness of the salt peaks depends
amost solely on axia dispersion. With regard to the
peak shape (skewness) there was good agreement
between the measurements and the simulations as
can be seen in Fig. 1. The peaks in Fig. 1 are at the
highest liquid velocity and they show the largest
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Fig. 1. Measured (points) and calculated (lines) eluted peaks at
v,,,=0.35 mm/s.
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Fig. 2. Measured and calculated breakthrough times of the top of
the peaks (for definition of symbols see Fig. 1).

difference between the measurements and the model
predictions.

3. PART 2. Extension of Ogston’s partition
model

3.1. Introduction

The partitioning of large solutes between fibrous
structures and the surrounding liquid is generaly
described with Ogston’s partition model [6]. How-
ever, as we will show, the way other authors
introduced the fiber holdup into this model can be
improved. Also, the model is only valid at low solute
concentrations. Not much is known about the effect
of concentration on the partitioning. Fanti and Glandt
[7] give an expression that correlated well with their
Monte Carlo simulations. This eguation is strictly
only valid for very thin fibers.

o0 509% D! T100%

0 0.0001  0.0002

Voup [M/S]

0.0003  0.0004

Fig. 3. Measured and calculated peak broadness (for definition of
symbols see Fig. 1).
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In this section we first derive a variation of
Ogston’s equation which does give the influence of
the fiber holdup correctly. Then we show a new way
of deriving Ogston’s equation. Finally we extend the
new model to account for higher solute concen-
trations and the effect of cosolutes.

3.2 Introducing the fiber holdup into Ogston’s
model in a correct way

In 1958 Ogston derived a model for the partition-
ing of large molecules in fibrous structures [6]. In
this model he assumes that a gel consists of random-
ly oriented infinitely thin and infinitely long fibers;
the solutes are taken to be rigid spheres. The
equation that Ogston derived for the partition coeffi-
cient can be written as:

K=e* 2)
with
a=mlr? ©)

where | is the fiber length per volume and r is the
solute radius. When the fibers are not infinitely thin
the dimensionless number « is usualy rewritten as:
r 2
a=g (1 T r—f) (@)
where r, is the fiber radius and ¢ is the fiber holdup.
In the derivation of this formula it is assumed that
the fibers do not overlap. However this formula is
not exact, because for very small solutes the partition
coefficient should be 1— ¢ instead of exp(—¢).
Here we show how the fiber holdup can be incorpo-
rated correctly in the dimensionless number «.
Ogston assumes that the fibers are infinitely thin,
and so he can neglect any overlap of the fibers. In
real gels fibers that have a certain thickness and can
overlap better represent the structure. Then the
overlap cannot be neglected and a better form of the
parameter o appears to be:

a=f<1+;—f>2 (5)

where f is the fiber holdup including overlapping
fibers (which means f can be larger than 1).

We need a relation between f and ¢ and we find it
with a cell model. Suppose the gel can be repre-

sented by P equally sized cells. We begin with P
empty cells, and begin to add fiber elements to these
a random, until the fraction ¢ is filled with fiber.
During this filling we count two numbers:

1. Inthefirst count we allow each cell to be counted
any number of times. A cell filled twice repre-
sents an overlap of two fibers. This count is
related to f, the fraction of fibers including
overlap.

2. In the second count, a filled cell cannot be
counted a second time. This count is related to ¢,
the fiber volume fraction without fiber overlap.

The first cell encountered is always empty, therefore
the number of filled cells according to the second
count begins with:

N, =1 (6)

where the subscript is the number of filled cells
according to the first count. Every further time a cell
is filled we have for the second count:

I\Ii
Ny =N+ 1_3 (7)
The second term on the right hand is the chance that

the cell is still empty. Eq. (7) can easily be extended.
For example, using it three times gives:

Na=14(1-5) +(1-5) +(1-5)
=P\ TR UL

+<1—%)4Ni,3 (8

This can be extended and then solved to give:

RN B

For a large number of cells this yields:

i egm [+ )]
¢=imp=m [1-\1-p
1

= f (10)

where we made use of F = fP and N- = ¢P. This can
be rearranged as:
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f=|n<1_1¢> (11)

The result for the partition coefficient is:

K = (1 _ ¢)(1+(r5/rf))2 (12)

This eguation does have the correct limiting behavior
for small solutes. The difference between this equa-
tion and the origina Ogston equation becomes
important for large values of the volume fraction ¢
of the fibers.

3.3 A new derivation of Ogston’s partition
equation

The method used above of relating the fiber
holdup, ¢, to the fiber holdup including overlapping
fibers, f, also offers a way to derive Ogston's
partition equation. Consider the process of increasing
the fiber radius and decreasing the solute radius to
zero, keeping their sum constant. During this process
the partition coefficient will be constant and at the
end it will equal 1 — ¢'. Here ¢’ is the fiber holdup
without overlapping fibers extrapolated to zero solute
radius; this can also be called the excluded volume.
This ¢’ is related to an f’, the excluded volume
including overlapping fibers, in the same way as ¢
and f are related (Egs. (10) or (11)). The fs are
proportional to the square of the fiber radius, which
gives:

e +rg\2
fr=f (- (13)
f

With these relations we find:

K=1-¢' =exp(—f’)=exp< —f<1+%)2>

f

_ (1 _ ¢)(1+(r5/rf))2 (14)

This is the same result as found before.
34. Extending the new partition model

The method used above can easily be extended to
include higher solute concentrations and the effect of
cosolutes. In order to do this we first consider the
relation between the partitioning and the excluded
volumes in the gel and in the bulk.

An expression for the partitioning equilibrium can
be derived in the same way as the common Lang-
muir equation for adsorption equilibrium. At equilib-
rium the rate at which the solute goes from the bulk
to the gel should be equal to the rate at which it goes
the other way. We assume that the rate is propor-
tional to the volume fraction of the solute in the
phase where it comes from and to the available
volume in the phase where it goes to. The available
volume is the volume in a phase available for the
center of the solute divided by the total volume of
that phase: it equals one minus the excluded volume.
This gives:

kd)i,b(l - d)i,) =key(1— ¢i’,b) (15)

where k is a rate coefficient, ¢, and ¢, are the
solute holdup in the gel and the bulk and ¢/ and ¢/,
are the excluded volume in the gel and the bulk. For
the partition coefficient this gives:
1— !

K= i = d)/l

¢i,b 1- ¢i,b
So the problem is reduced to finding the excluded
volumes in both phases. We calculate these in four

steps:

(16)

1. First we calculate the total holdup, ¢,,, of al
objects that can exclude a solute (these include
the solute itself).

2. From this we calculate the total holdup including
overlap, f,, with Eq. (11).

3. From this we calculate for a certain component i
the excluded volume including overlap, f/,

4. And from this we calculate the real excluded
volume, ¢/, with Eq. (11).

In the third step we need a relation between f' and f:
the ratio of f' and f is the ratio of the volume
excluded by a single object and the rea volume of
that object. For a sphere between fibersit is given by
Eq. (13). For a sphere with radius r, between other
spheres with radius r; it becomes:

rtr3
e () n
]

because the volume of a sphere is proportional to the
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third power of the radius. For a sphere between equal
spheres it becomes:

fr=gf (18)

For a sphere between fibers, other spheres and like
spheres we use an interpolation:

2 r,+ri\3
< > ¢f+8¢|+21< r ]> 4
)
b+ b+ b

r+r,
rf

fr=f

(19)

Finally we find a set of implicit equations for the
partition coefficients:

ro+r\3
8¢>.,b+2j< ) Bo

J

bpt 21 B

b

X |n<1— qb—}j] qb>
<ri;:rf)z¢f +85 +2j <ri:r,‘>3¢l

1 j
_aexp ¢f+¢.+zj¢j

Infl—¢ — &b — 20
><n( h— ¢ $¢>,) (20)

where subscript b denotes the bulk phase. The
partition coefficients can be calculated with the first
part of Eqg. (16) after the set of Egs. (20) have been
solved simultaneoudly for all solutes that are able to
partition between the gel and the bulk.

3.5. Discussion

The interpolation in Eq. (19) is not exact, there-
fore we have to test the equation for some limiting
cases. When there are no cosolutes and the solute
concentration is low, Eqg. (20) reduces to Ogston's
equation, as it should. When there are no cosolutes
and the fiber radius is very small the results of Eq.
(20) can be compared to those that Fanti and Glandt
[7] obtained with Monte Carlo simulations. This is
done in Fig. 4, it is seen that the agreement is quite

0 0.05 0.1 0.15 0.2 0.25

5,b

Fig. 4. Comparison of Eq. (20) (solid lines) with the results of
Fanti and Glandt [7] (broken lines).

good. Therefore we think that the model gives a
reasonable estimation of the partition coefficient. The
model is also very flexible, for instance for a sphere
between short fibers with length |, we can use:

:f (rf + rs)z(lf + 2rs)

!
f 2
el

(21)

And for a sphere between (randomly distributed) flat
plates with surface A, circumference C and thickness
d we can use:

o (A+Cr2)‘((jd+2r5) (22)

These equations can be introduced into Eqg. (19) in
the same way as Eqgs. (17) and (18) were introduced.

4. PART 3. Extension of Ogston’s diffusion
model and comparison with experimental data

4.1. Introduction

Various models are used for the estimation of
diffusion coefficients in fibrous structures (see e.g.
[8-11]). Usualy the models give an estimation for
the retardation of the solute by the gel, this is the
ratio of the diffusion coefficient in the fibrous
structure and the diffusion coefficient in free solution
(D/D,). The most well-known models are Ogston’s
diffuson model [11] and the effective medium
model [12]. Ogston’s model takes the effect of the
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fiber radius, the solute radius and the fiber holdup
into account. In the effective medium the effect of
the solute radius and the gel permeability are taken
into account.

In this section of the paper we present some data
collected from the literature. Based on this data we
propose two modifications of Ogston's diffusion
model [11]: the introduction of flexibility factors of
the solute and the fiber and of two diffusion regimes.
In order to compare Ogston’s diffusion model with
experimental data we need reliable values for the
fiber thicknesses. We derive these from a comparison
of Ogston’s partition model with the experimental
data.

Finally we propose an extension of the diffusion

Table 2

equation to systems with higher solute concentrations
and cosolutes.

4.2. Comparison of Ogston’s models with data
from the literature

In this section we compare Ogston’s partition and
diffuson models with experimental results from
ourselves and from others. Table 2 gives an over-
view of the sources of the collected data We
arranged the data in groups according to the nature
of the fibers (agarose, sephadex or polyacrylamide)
and the solutes (protein, linear polymer or virus).

Ogston’s model is given by Eq. (2) with:

Overview of sources of collected data, system abbreviations are: Po: linear polymer; Pr: protein; MV: Southern Bean Mosaic Virus; A:
agarose; S: Sephadex; P or PAA: polyacrylamide

Data source System Technique Comments
Poitevin and Wahl Dextrans in Sephadex FRAP 2
(13] (Po-9)
Moussaoui et al. Proteins in AcA-34 FRAP AcA-34 consists of 4% agarose
[14] (Pr—pP) and 3% PAA, we assumed that
only the 3% PAA was present
Moussaoui et al. Proteins in Sepharose FRAP
[15] Cl-B (Pr-A)
Johnson et al. Proteins in SP-Sepharose FRAP
[16] (Pr-A)
Johnson et al. Proteins and Ficolls in FRAP P
[17] agarose (Pr—A, Po-A)
Tong and Andersson Proteins and PEGs in FRAP
[18] PAA (Pr—P, Po—P)
Ackers and Steere Proteins and Mosaic Ultrafiltration ®, actually K/K, -D/D, was
[19] Virus in Agar measured; we assumed that agar
(Pr=A, MV-A) has the same properties as agarose
Williams et al. Dextrans in PAA Ultrafiltration
(9 (Po—P)
Laurent and Killander Dextrans in Sephadex Chromatography Only Ks were measured
[20] (Po-5)
Boyer and Hsu Proteins in Sepharose Chromatography
[21] Cl-6B (Pr-A)
Vonk [3] Proteins in Sephadex
(Pr-S) Chromatography
Present study Proteins in Q-Sepharose Chromatography

FF (Pr-A)

#The measurements of Poitevin and Wahl [13] do not agree with those of others [3,20]. We have assumed that the authors estimated the
Stokes radii of the dextrans a factor 1.5 too high and have used corrected Stokes radii in our calculations. We think they made an error with
the Stokes radii because these were estimated in a complicated way, while the other parameters (K and D/D,,) follow quite straightforward

from the experiments.

® K was not measured, we estimated it with Eq. (2).
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Fig. 5. Thefit of Ogston’s partition model (Eq. (2)) (for definition
of abbreviations see Table 2).

a=in(1=5)(1+7)’ (23)

The model works well as can be seen in Fig. 5. In
our calculations of the dimensionless number o we
used the Stokes radius for the solute radius, r; in al
cases this radius was given in the publications. For
the fiber holdup of Sephadex gels we used the values
given by Vonk [3]; for that of Sepharose gels we
used the percentage given in the name of the gel, for
Sepharose ion-exchange gels we added 2 percent to
the solid holdup in order to account for the ion-
exchange groups. For the fiber radii, r;, we used
fitted values: for agarose 22 A, for Sephadex 7.2 A
and for polyacrylamide 6.5 A. In our opinion these
fiber radii do not have much physical significance
except that they give good estimations of the size of
the holes in fibrous structures. If the fiber radius is
unknown « can be calculated from K with Eq. (2);
this is possible due to the clear relation between «
and K. According to Ogston’s diffusion model,
which is discussed below, « is aso the parameter
that determines the retardation, D/D,. This means
that Ogston’s diffusion model can aso be interpreted
as giving a relationship between the partition coeffi-
cient and the retardation coefficient.

In 1973 Ogston et al. proposed a mode to
describe the restricted diffusion of large moleculesin
fibrous structures [11]. The model is based on
Einstein's stochastic model, which assumes that
diffusion is a process in which molecules make steps

with length A in a random direction with frequency
k. This gives the following expression for the
diffusion coefficient:

D=g A% (24)
In a fibrous structure not every step can succeed, if
the solute collides with a fiber the step will not
succeed. Following Ogston, the probability that a
step of length A can succeed, which equals the
retardation, is given by:

D 1
P, =D—0=exp< -5 n-lr/\) (25)

where 1 #lr is the average number of collisions per
traveled distance. According to Ogston we should
choose the step size as limited by the size of the
holes in the fibrous structure. The diffusion process
is then a process in which solutes jump randomly
from one hole to an adjacent hole, with each jump
having a certain chance of succeeding. This gives:

A=2/Nml (26)
And from Egs. (25) and (26) it follows that:
D
D = exp(— Valr) = exp(— Va) (27)
0

In Fig. 6 this theory is compared with the data we
collected. For the sake of consistency we used the

* .
*
EBIA oA
“ A
Ot o ON = 4 A
< * f‘? o o Oo
S o3 “0.2.0‘..‘DA eq. 27
S et ® om o
g <
.“ . ] - <>. - Ap .u '/A
* * o0 A
0‘ . 4 A
0-1 T *- 4. L} |A L}
0 05 1 Jg 15 2

Fig. 6. The fit of Ogston's diffusion model (Eq. (27)) (for
definition of symbols see Fig. 5).
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same values for the parameters (¢, r; and r,) as in
the calculations for the partition coefficient. As can
be seen in Fig. 6 there is considerable scatter in the
data and the predictions can be very poor. In the next
two sections we propose two modifications to Og-
ston’s diffusion theory which will give better agree-
ment between theory and experiment.

4.3. Incorporating flexibilities into Ogston’s
diffusion model

As can be seen in Fig. 6, there is considerable
scatter in the data, however there are also some clear
trends. Linear polymers show consistently higher
diffusion coefficients than proteins of the same
Stokes radius. Similar differences can be noticed
when different fibrous structures are considered. To
take this into account we propose the introduction of
flexibility factors for the fiber and the solute, f, and
f,, respectively. If either the solute or the fiber
flexibility increases, the chance that a step will
succeed will increase. We assume that the average
distance traveled up to a collision increases with the
flexibility factor. Since Ogston’s theory assumes
rigid objects we chose to make the flexibility factor
for rigid objects unity (we assume that proteins and
agarose are rigid). When we incorporated this in Eq.
(25) we found (when we compared the new equation
with the data) that we still needed an empirical factor
of 3. The reason for this is unknown, it might be due
to the increased friction between the solute and the
solvent which on its turn is caused by the fibers
hindering the solvent in its motion. The diffusion
coefficient then becomes:

D —3rVal\ -3Va -
DO - P ff fs - o ff fs ( )

The effect of introducing the flexibility factors can
be seen when Figs. 6 and 7 are compared: the
consistent differences between the groups have dis-
appeared; the scatter within the groups remains of
course. The fitted flexibility factors are given in
Table 3. The nature of the flexibility factors is
unknown to us, that of the fibers may be related to
the fiber radius, r,, to the real fiber thickness or to
the persistence length of the polymer chains, how-

Fig. 7. The fit of Ogston's diffusion model modified with
flexibility factors (Eg. (28)); the bent line represents a linear
relationship between o and ff, In(D/D,). (For definition of
symbols see Fig. 5).

ever there is not enough data to state any definite
relationship.

4.4. Two diffusion regimes in Ogston’s diffusion
model

Itisclear in Fig. 7 that at low values of a (<0.7),
in structures with little fiber, the theory of Ogston is
not correct. Here it appears that In(D/D,) is a linear
function of « instead of “a. Therefore we propose
that the step size in large holes is not limited by the
size of the holes but that there is some limiting step
size, Ay, Which is related to the solute radius and the
fiber radius by a constant, s:

Ao =S(rs+1¢) (29)

(We think that it would be better justified to relate A,
to the solute radius aone, however, this leads to
more scatter in the data). The effective step size is
then the smallest of the hole size (Eq. (26)) and the
limiting step size (Eq. (29)). A convenient empirical
formula is:

Table 3

Fitted parameters needed in Egs. (28) and (31)

f,agarose 1 s,linear polymers 2

f,sephadex 15 s,proteins 1
2.25 5 7

f,polyacrylamide
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Fig. 8. The fit of Ogston's diffusion model modified with
flexibility factors and a maximum step length (Eqg. (31)), X on the
vertical axis represents:

V) (0

(for definition of symbols see Fig. 5).

= (Srg+1y) 2+ (05V7l)? (30)

The final result is Eqg. (31) and the fit with the datais
seen in Fig. 8. The fitted constants are given in Table
3.

D_ = 31
D, |~ <fffs)2 <2>21 (31)
—_— + J— [—
3 s/ «
The effect of introducing this limiting step size is
seen in comparing Figs. 7 and 8 at low «: the fit is

much better. The scatter has not changed because the
same data points are used.

4.5. Extending Ogston’s diffusion model to more
complicated systems

We would like to suggest an extension of Eq. (31)
to systems with higher concentrations and cosolutes.
We propose that « should be replaced by an a4
(subscript d for diffusion), and f; by an f;, represent-
ing al the objects that can hinder the diffusion. For
ay we propose that one should use the « that one
would find for the partitioning at infinite dilution
between the bulk and a system of fibers, fixed solutes
and fixed cosolutes:

1
a,=|
‘ n<1—¢f—¢i—2-¢->
I’+I’
() o2 (1)
X l
htot+2 b

(32)

For the flexibility factor we propose a weighted
average of the flexibility factors. Since obstacles
with lower flexibility factors are more important in
the retardation we propose:

hro+2, b

fy &b b
f (ﬁ. E ]

(33)

If there are small non-fixed obstacles among the
obstacles, the flexibility factors of these obstacles
may have to be increased since they can easily be
moved by the solute and therefore offer less resist-
ance to diffusion. Since next to nothing is known
about the retardation of diffusion in these compli-
cated systems we are unable to test this extension of
the model.

4.6. Discussion

Besides Ogston’'s diffusion model other models
have been proposed that can explain the retardation
of diffusion in fibrous structures. In this paragraph
we discuss the important ones.

In Ogston’s model only the effect of obstruction
on the diffusion coefficient is considered. Another
model that also incorporates only obstruction effects
is the model by Johansson et a. [10]. Their result for
stiff fibers (their Eq. (7)) can be approximated
closely by:

R _ A 0.72a
D0 =€ (34)

This gives a result comparable to our result for
fibrous structures with large holes, athough the
factor 0.72 is too small. It seems to us that their Eq.
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(4), for the retardation in a cylindrical cell, is not
valid in fibrous structures with small holes.

It has also been suggested that the additional
hydrodynamic friction caused by the fibers can
explain the retardation. The fibers around the solute
restrict the solvent in its motion, which leads to an
increased friction between the solute and the solvent.
On this basis Phillips et a. [12] suggested that
Brinkman’'s equation can be used:

D 2oz |t

E=[1+\/%+3—f(] (35)
where Kk is the permeability of the fibrous structure.
This approach is called the effective medium model.
Based on the data collected by Jackson and James
[22] k can be esimated by k=05r7/¢ and it
follows that ri/kz 2a. The equations of Phillips et
a. [12] and Ogston et a. [11] then give approximate-
ly the same retardation. In this model the effect of
fiber flexibility may already be accounted for in the
permeability, this is not known. The effect of solute
flexibility may be accounted for by changing the
effective solute radius.

Finaly it has been suggested by Johnson et al.
[17] that the retardation by obstruction (Eq. (27))
and by additiona friction (Eq. (35)) should be
multiplied.

Since Ogston’s model, the effective medium
model and the multiplication of the results of these
two models have approximately the same depen-
dence on « it seems to us that the preference for one
of them should be based on their theoretical sound-
ness, on practical considerations (is the permeability
known?), or on someones taste. We think Ogston’s
model is the most elegant one.

Finaly it must be said that the results of our own
measurements are not very well described by Og-
ston’s models. For the largest protein there is good
agreement, but for smaller proteins Ogston’s models
(with ¢ =0.06 and r,=22 A, the agarose parameters
when there are no ion-exchange groups attached)
overestimate the partition and the diffusion coeffi-
cient. Apparently the steric effect of the ion-ex-
change groups is large for small solutes and small for
large solutes. However when Eq. (2) and (31) are
combined and « is eliminated, giving a relation
between K and D/D,, the agreement is much better.

4.7. Symbols
c mobile phase concentration, mol/I or g/I
Cin mobile phase concentration coming into

a ‘‘tank’”, mol/I or g/l

D diffusion coefficient, m?/s

D, diffusion coefficient in free solution, m?/
s

d, particle diameter, m

K partition coefficient, —

K, liquid side mass transfer coefficient, m/s

K, particle side mass transfer coefficient,
m/s

L bed length, m

I fiber length per volume, m™?

Liank length of a *‘tank’”, m

MT mgss transfer per particle volume, mol/s
m

N, Avogadro’s constant, 6.02-10% mol ~*

q stagnant phase concentration, mol/m°®

R gas constant, 8.314 J/mol K

r sum of radius of fiber and solute (r =
re+rgy, m

T temperature, K

t100 elution time of pesk top, s

tso, time at which the eluted peak height is

50 percent of the maximum and peak
height is increasing, s

tso., time at which the eluted peak height is
50 percent of the maximum and peak
height is decreasing, s

Usup superficial liquid velocity, m/s
dimensionless number defined by Eq.
(23), -

) viscosity, N s/m?
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