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Partitioning and diffusion of large molecules in fibrous structures
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Abstract

This paper consists of three parts. In the first part we present diffusion and partition coefficients of proteins in agarose that
were measured with gel permeation chromatography. In the second part we present a partition model which includes the
effects of solute concentration and of cosolutes. In the third part we modify and extend Ogston’s diffusion equation to
account for the effects of solute and fiber flexibility, solute concentration and cosolutes. We find good agreement between the
proposed models and data from the literature.  2000 Elsevier Science B.V. All rights reserved.
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1. General introduction applied to systems with relatively large elements,
such as two phase systems with proteins and micelles

Partitioning and diffusion of large molecules in or biological systems such as blood.
fibrous structures is important in several applications
such as gel permeation chromatography, controlled
drug release, ultrafiltration and electrophoresis. In 2. PART 1. Chromatographic measurement
this paper we examine these phenomena in three
parts. In the first part we present measurements with 2.1. Introduction
gel permeation chromatography. In the second part
we present a new partition model of which Ogston’s Diffusion and partition coefficients of proteins in
partition equation is a limiting case. In the third part gels can be measured by various methods, among
we present an extension of Ogston’s diffusion model them are ultrafiltration, fluorescence recovery after
and a comparison of Ogston’s partition and diffusion photobleaching and gel permeation chromatography
models with data collected from the literature. The (GPC). In GPC the retention time of a peak depends
extensions that we propose include the effects of on the partition coefficient of the protein in the gel.
solute and fiber flexibility, of solute concentration The peak broadness depends, among other things, on
and of cosolutes. The new equations are not re- the diffusion coefficient of the protein in the gel. In
stricted to systems with fibrous structures but can be order to extract these coefficients from the ex-

perimental data a model is needed to describe the
process taking place in the column. Chromatography*Corresponding author. Tel.: 131-50-363-7241; fax: 131-50-
is a commonly used technique for measuring parti-363-4479.
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to gel permeation chromatography. The experimental the proteins to the adsorbent occurred. The pulses
procedures and the models that are used differ were introduced into the feed of the column with an
slightly from author to author. Here we present our injection valve and an injection loop of 0.5 ml. The
model and our measurements of partition and diffu- protein concentration in the injected pulses was 10
sion coefficients of proteins in a gel with ion-ex- g / l. In the experiments with sodium chloride we
change groups, under non-binding conditions. used an elution buffer with 0.02 mol / l sodium

chloride and a pulse with 1 mol / l sodium chloride.
2.2. Experimental method The flow through the column was varied between 0.1

and 4 ml /min. At the outlet of the column the
Q-Sepharose FF is an agarose based ion-exchange conductivity and the UV-adsorption at 280 nm were

gel that was obtained from Pharmacia Biotech measured.
(Uppsala, Sweden), it has a mean particle diameter In a typical experiment the buffer was continuous-
of 96 mm. Bovine serum albumin (BSA) was ob- ly passed through the column. Then the injection
tained from Boehringer Mannheim (now a part of loop was filled with the protein solution and the
Roche, Basel, Switzerland) (735108), other proteins injection valve was switched to introduce the pulse
were obtained from Sigma Chemicals (Zwijndrecht, into the feed. Finally the elution profile was mea-
The Netherlands): ovalbumin (A5503), cytochrome c sured at the outlet of the column.
(C2037), lysozyme (L6876) and g-globulin (G5009).
Important parameters of these substances can be

2.3. Modelingfound in Table 1. The experiments were performed
on an FPLC system from Pharmacia Biotech which

We assumed that the column could be representedincluded an XK16 column (1.58 cm ID, 10.55 cm
by a large number of tanks in series with eachbed length), a V7 valve for sample injection, a P500
‘‘tank’’ consisting of an ideally mixed mobile liquidpump, a UV-MII UV monitor and a conductivity
part with holdup ´ and an ideally mixed stagnantlmonitor (18-1104-39). The experiments were per-
part. Mass transfer was modeled with the Linearformed at room temperature (228C).
Driving Force (LDF) model; it was shown by VonkWe performed pulse response measurements with
[3] that this works well for gel permeation chroma-these proteins in the Q-Sepharose FF column. In
tography modeling. In the LDF model it is assumedorder to measure the effect of axial dispersion on the
that mass transfer occurs through two films in series:peak broadness we also performed experiments with
the liquid film with mass transfer resistance 1/k , andlsodium chloride pulses. The buffer that we used for
the particle film with resistance 1/k . The masspelution and for dissolving the proteins was an acetic
balance for the two parts of each ‘‘tank’’ thenacid /acetate buffer with an acetate concentration of 1
becomes:mol / l and a pH of 4.4. In this buffer no binding of

n1 2 ´≠c supl
] ]] ]]5 2 MT 1 (c 2 c)in≠t ´ ´ LTable 1 l l tank

Parameters in and results of the gel permeation experiments. The ≠q
]5 MTmolecular weights and diffusion coefficients were obtained from ≠t

[1] and [2], the Stokes radii were calculated from the diffusion 216 1 K
coefficients with: r 5 RT /6pN hD ] ] ]Stokes A 0 MT 5 1 (Kc 2 q)S Dd k kp p l12Species M 10 D r K D/Dm 0 Stokes 0 (1)2 DD˚ 0[g /mol] [m /s] [A] [–] [–] ]]k 5 Shp p D d0 pNaCl 58.5 1610 0.86 0.53
Cytochrome c 12 300 130 16.6 0.64 0.21 D0

]k 5 ShLysozyme 14 300 113 19.1 0.63 0.22 l l dpOvalbumin 43 500 73 29.6 0.62 0.18
1 / 3d n1.09BSA 66 270 59 36.6 0.59 0.16 p sup

]] ]]Sh 5 S Dlg-globulin 169 000 41 52.7 0.47 0.15 ´ Dl 0
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For the Sherwood number on the particle side (Sh )p

we took a value of 10. For the Sherwood number on
the liquid side (Sh ) we used an equation given byl

Wilson and Geankoplis [4]. The equation given by
Pfeffer [5] is similar and gives almost the same
results. In the case of proteins the main resistance to
mass transfer is located in the particle film.

2.4. Results and discussion

We did not succeed in measuring the mobile liquid
Fig. 2. Measured and calculated breakthrough times of the top ofholdup in the column, therefore we assumed a value
the peaks (for definition of symbols see Fig. 1).of 0.37. The number of tanks is representative for the

axial dispersion. To calculate this number we used
difference between the measurements and the modelthe extrapolated point (♦) at zero velocity in Fig. 3,
predictions.at this point the peak broadness is thought to be only

affected by axial dispersion. We found a number of
275 tanks. With a bed length of 10.55 cm and a

3. PART 2. Extension of Ogston’s partitionparticle diameter of 96 mm this gives each tank a
modellength of about 4 particle diameters.

The partition coefficient, K, of each solute was
3.1. Introductionfitted with the breakthrough time of the peaks; the

retardation coefficient, D/D , was fitted with the0
The partitioning of large solutes between fibrouspeak broadness. The results of the experiments can

structures and the surrounding liquid is generallybe found in Figs. 1–3 and Table 1.
described with Ogston’s partition model [6]. How-The value for D/D for NaCl may seem a little0
ever, as we will show, the way other authorssmall but there is a large uncertainty in this value
introduced the fiber holdup into this model can bebecause the broadness of the salt peaks depends
improved. Also, the model is only valid at low solutealmost solely on axial dispersion. With regard to the
concentrations. Not much is known about the effectpeak shape (skewness) there was good agreement
of concentration on the partitioning. Fanti and Glandtbetween the measurements and the simulations as
[7] give an expression that correlated well with theircan be seen in Fig. 1. The peaks in Fig. 1 are at the
Monte Carlo simulations. This equation is strictlyhighest liquid velocity and they show the largest
only valid for very thin fibers.

Fig. 1. Measured (points) and calculated (lines) eluted peaks at Fig. 3. Measured and calculated peak broadness (for definition of
v 50.35 mm/s. symbols see Fig. 1).sup
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In this section we first derive a variation of sented by P equally sized cells. We begin with P
Ogston’s equation which does give the influence of empty cells, and begin to add fiber elements to these
the fiber holdup correctly. Then we show a new way at random, until the fraction f is filled with fiber.
of deriving Ogston’s equation. Finally we extend the During this filling we count two numbers:
new model to account for higher solute concen-
trations and the effect of cosolutes.

1. In the first count we allow each cell to be counted
3.2. Introducing the fiber holdup into Ogston’s any number of times. A cell filled twice repre-
model in a correct way sents an overlap of two fibers. This count is

related to f, the fraction of fibers including
In 1958 Ogston derived a model for the partition- overlap.

ing of large molecules in fibrous structures [6]. In 2. In the second count, a filled cell cannot be
this model he assumes that a gel consists of random- counted a second time. This count is related to f,
ly oriented infinitely thin and infinitely long fibers; the fiber volume fraction without fiber overlap.
the solutes are taken to be rigid spheres. The
equation that Ogston derived for the partition coeffi- The first cell encountered is always empty, therefore
cient can be written as: the number of filled cells according to the second

2a count begins with:K 5 e (2)

N 5 1 (6)1with
2 where the subscript is the number of filled cellsa 5 plr (3)s

according to the first count. Every further time a cell
where l is the fiber length per volume and r is thes is filled we have for the second count:
solute radius. When the fibers are not infinitely thin

Nithe dimensionless number a is usually rewritten as: S ]DN 5 N 1 1 2 (7)i11 i P2rs
]a 5 f 1 1 (4)S Dr The second term on the right hand is the chance thatf

the cell is still empty. Eq. (7) can easily be extended.
where r is the fiber radius and f is the fiber holdup.f For example, using it three times gives:
In the derivation of this formula it is assumed that

2 3the fibers do not overlap. However this formula is 1 1 1
] ] ]S D S D S DN 5 1 1 1 2 1 1 2 1 1 2i11not exact, because for very small solutes the partition P P P

coefficient should be 1 2 f instead of exp(2f). 41
]S D1 1 2 N (8)Here we show how the fiber holdup can be incorpo- i23P

rated correctly in the dimensionless number a.
This can be extended and then solved to give:Ogston assumes that the fibers are infinitely thin,

and so he can neglect any overlap of the fibers. In F21 i F1 1
real gels fibers that have a certain thickness and can ] ]S D H S D JN 5O 1 2 5 P 1 2 1 2 (9)F P Pi50overlap better represent the structure. Then the
overlap cannot be neglected and a better form of the For a large number of cells this yields:
parameter a appears to be:

fPN 1F2r ] ]F S D Gs f 5 lim 5 lim 1 2 1 2
]a 5 f 1 1 (5) P PP→` P→`S Drf fe 2 1

]]5 (10)where f is the fiber holdup including overlapping fefibers (which means f can be larger than 1).
We need a relation between f and f and we find it where we made use of F 5 fP and N 5 fP. This canF

with a cell model. Suppose the gel can be repre- be rearranged as:
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An expression for the partitioning equilibrium can1
]]f 5 ln (11) be derived in the same way as the common Lang-S D1 2 f

muir equation for adsorption equilibrium. At equilib-
The result for the partition coefficient is: rium the rate at which the solute goes from the bulk

to the gel should be equal to the rate at which it goes
2(11(r / r ))s fK 5 (1 2 f) (12) the other way. We assume that the rate is propor-

tional to the volume fraction of the solute in theThis equation does have the correct limiting behavior
phase where it comes from and to the availablefor small solutes. The difference between this equa-
volume in the phase where it goes to. The availabletion and the original Ogston equation becomes
volume is the volume in a phase available for theimportant for large values of the volume fraction f
center of the solute divided by the total volume ofof the fibers.
that phase: it equals one minus the excluded volume.
This gives:3.3. A new derivation of Ogston’s partition

equation 9 9kf (1 2 f ) 5 kf (1 2 f ) (15)i,b i i i,b

where k is a rate coefficient, f and f are theThe method used above of relating the fiber i i,b

9 9solute holdup in the gel and the bulk and f and fholdup, f, to the fiber holdup including overlapping i i,b

are the excluded volume in the gel and the bulk. Forfibers, f, also offers a way to derive Ogston’s
the partition coefficient this gives:partition equation. Consider the process of increasing

the fiber radius and decreasing the solute radius to 9f 1 2 fi i
] ]]]K 5 5 (16)zero, keeping their sum constant. During this process 9f 1 2 fi,b i,bthe partition coefficient will be constant and at the

end it will equal 1 2 f9. Here f9 is the fiber holdup So the problem is reduced to finding the excluded
without overlapping fibers extrapolated to zero solute volumes in both phases. We calculate these in four
radius; this can also be called the excluded volume. steps:
This f9 is related to an f 9, the excluded volume
including overlapping fibers, in the same way as f

and f are related (Eqs. (10) or (11)). The fs are 1. First we calculate the total holdup, f , of alltot
proportional to the square of the fiber radius, which objects that can exclude a solute (these include
gives: the solute itself).

2 2. From this we calculate the total holdup includingr 1 rf s
]]f 9 5 f (13)S D overlap, f , with Eq. (11).totrf

3. From this we calculate for a certain component i
With these relations we find: 9the excluded volume including overlap, f ,i

2 4. And from this we calculate the real excludedrs
]K 5 1 2 f9 5 exp(2f 9) 5 exp 2 f 1 1S S D D 9volume, f , with Eq. (11).r if

2(11(r / r ))s f5 (1 2 f) (14) In the third step we need a relation between f 9 and f :
the ratio of f 9 and f is the ratio of the volumeThis is the same result as found before.
excluded by a single object and the real volume of
that object. For a sphere between fibers it is given by3.4. Extending the new partition model
Eq. (13). For a sphere with radius r between otheri

spheres with radius r it becomes:jThe method used above can easily be extended to
3include higher solute concentrations and the effect of r 1 ri j

]]f 9 5 f (17)cosolutes. In order to do this we first consider the S Drj
relation between the partitioning and the excluded
volumes in the gel and in the bulk. because the volume of a sphere is proportional to the
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third power of the radius. For a sphere between equal
spheres it becomes:

f 9 5 8f (18)

For a sphere between fibers, other spheres and like
spheres we use an interpolation:

32 r 1 rr 1 r i ji f
]] ]]f 1 8f 1O fS D S Df i j jr rf j

]]]]]]]]]]]]f 9 5 f
f 1 f 1O ff i j j

Fig. 4. Comparison of Eq. (20) (solid lines) with the results of(19)
Fanti and Glandt [7] (broken lines).

Finally we find a set of implicit equations for the
partition coefficients:

3r 1 ri j good. Therefore we think that the model gives a]]8f 1O fS Di,b j j,br1 j reasonable estimation of the partition coefficient. The
] ]]]]]]]]exp 3f model is also very flexible, for instance for a spherei,b f 1O fi,b i j,b

between short fibers with length l we can use:f

2(r 1 r ) (l 1 2r )f s f s
]]]]]f 9 5 f (21)3 ln 1 2 f 2O f 2i,b j,b 4S D r lj f f

32 r 1 rr 1 r i ji f And for a sphere between (randomly distributed) flat
]] ]]f 1 8f 1O fS D S Df i j jr r plates with surface A, circumference C and thickness1 f j

] ]]]]]]]]]]]]5 exp3 d we can use:fi f 1 f 1O ff i j j

(A 1 Cr )(d 1 2r )s s
]]]]]]f 9 5 f (22)Ad

3 ln 1 2 f 2 f 2O f (20)f i j 4S D
j These equations can be introduced into Eq. (19) in

the same way as Eqs. (17) and (18) were introduced.
where subscript b denotes the bulk phase. The
partition coefficients can be calculated with the first
part of Eq. (16) after the set of Eqs. (20) have been
solved simultaneously for all solutes that are able to 4. PART 3. Extension of Ogston’s diffusion
partition between the gel and the bulk. model and comparison with experimental data

3.5. Discussion 4.1. Introduction

The interpolation in Eq. (19) is not exact, there- Various models are used for the estimation of
fore we have to test the equation for some limiting diffusion coefficients in fibrous structures (see e.g.
cases. When there are no cosolutes and the solute [8–11]). Usually the models give an estimation for
concentration is low, Eq. (20) reduces to Ogston’s the retardation of the solute by the gel, this is the
equation, as it should. When there are no cosolutes ratio of the diffusion coefficient in the fibrous
and the fiber radius is very small the results of Eq. structure and the diffusion coefficient in free solution
(20) can be compared to those that Fanti and Glandt (D/D ). The most well-known models are Ogston’s0

[7] obtained with Monte Carlo simulations. This is diffusion model [11] and the effective medium
done in Fig. 4, it is seen that the agreement is quite model [12]. Ogston’s model takes the effect of the
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fiber radius, the solute radius and the fiber holdup equation to systems with higher solute concentrations
into account. In the effective medium the effect of and cosolutes.
the solute radius and the gel permeability are taken
into account.

In this section of the paper we present some data 4.2. Comparison of Ogston’s models with data
collected from the literature. Based on this data we from the literature
propose two modifications of Ogston’s diffusion
model [11]: the introduction of flexibility factors of In this section we compare Ogston’s partition and
the solute and the fiber and of two diffusion regimes. diffusion models with experimental results from
In order to compare Ogston’s diffusion model with ourselves and from others. Table 2 gives an over-
experimental data we need reliable values for the view of the sources of the collected data. We
fiber thicknesses. We derive these from a comparison arranged the data in groups according to the nature
of Ogston’s partition model with the experimental of the fibers (agarose, sephadex or polyacrylamide)
data. and the solutes (protein, linear polymer or virus).

Finally we propose an extension of the diffusion Ogston’s model is given by Eq. (2) with:

Table 2
Overview of sources of collected data, system abbreviations are: Po: linear polymer; Pr: protein; MV: Southern Bean Mosaic Virus; A:
agarose; S: Sephadex; P or PAA: polyacrylamide

Data source System Technique Comments
aPoitevin and Wahl Dextrans in Sephadex FRAP

[13] (Po–S)
Moussaoui et al. Proteins in AcA-34 FRAP AcA-34 consists of 4% agarose
[14] (Pr–P) and 3% PAA, we assumed that

only the 3% PAA was present
Moussaoui et al. Proteins in Sepharose FRAP
[15] Cl–B (Pr–A)
Johnson et al. Proteins in SP-Sepharose FRAP
[16] (Pr–A)

bJohnson et al. Proteins and Ficolls in FRAP
[17] agarose (Pr–A, Po–A)
Tong and Andersson Proteins and PEGs in FRAP
[18] PAA (Pr–P, Po–P)

bAckers and Steere Proteins and Mosaic Ultrafiltration , actually K /K ? D/D wassalt 0

[19] Virus in Agar measured; we assumed that agar
(Pr–A, MV–A) has the same properties as agarose

Williams et al. Dextrans in PAA Ultrafiltration
[9] (Po–P)
Laurent and Killander Dextrans in Sephadex Chromatography Only Ks were measured
[20] (Po–S)
Boyer and Hsu Proteins in Sepharose Chromatography
[21] Cl-6B (Pr–A)
Vonk [3] Proteins in Sephadex

(Pr–S) Chromatography
Present study Proteins in Q-Sepharose Chromatography

FF (Pr–A)
a The measurements of Poitevin and Wahl [13] do not agree with those of others [3,20]. We have assumed that the authors estimated the

Stokes radii of the dextrans a factor 1.5 too high and have used corrected Stokes radii in our calculations. We think they made an error with
the Stokes radii because these were estimated in a complicated way, while the other parameters (K and D/D ) follow quite straightforward0

from the experiments.
b K was not measured, we estimated it with Eq. (2).
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with length l in a random direction with frequency
k. This gives the following expression for the
diffusion coefficient:

1 2]D 5 l k (24)6

In a fibrous structure not every step can succeed, if
the solute collides with a fiber the step will not
succeed. Following Ogston, the probability that a
step of length l can succeed, which equals the
retardation, is given by:

Fig. 5. The fit of Ogston’s partition model (Eq. (2)) (for definition D 1
of abbreviations see Table 2). ] ]S DP 5 5 exp 2 plrl (25)l D 20

1
]where plr is the average number of collisions per2

traveled distance. According to Ogston we should
2r1 choose the step size as limited by the size of thes

]] ]a 5 ln 1 1 (23)S DS D1 2 f r holes in the fibrous structure. The diffusion processf

is then a process in which solutes jump randomly
The model works well as can be seen in Fig. 5. In

from one hole to an adjacent hole, with each jump
our calculations of the dimensionless number a we

having a certain chance of succeeding. This gives:
used the Stokes radius for the solute radius, r ; in alls

]cases this radius was given in the publications. For Œl 5 2/ pl (26)
the fiber holdup of Sephadex gels we used the values
given by Vonk [3]; for that of Sepharose gels we And from Eqs. (25) and (26) it follows that:
used the percentage given in the name of the gel, for
Sepharose ion-exchange gels we added 2 percent to D ] ]Œ Œ]5 exp(2 plr) 5 exp(2 a) (27)the solid holdup in order to account for the ion- D0

exchange groups. For the fiber radii, r , we usedf
˚ ˚fitted values: for agarose 22 A, for Sephadex 7.2 A In Fig. 6 this theory is compared with the data we

˚and for polyacrylamide 6.5 A. In our opinion these collected. For the sake of consistency we used the
fiber radii do not have much physical significance
except that they give good estimations of the size of
the holes in fibrous structures. If the fiber radius is
unknown a can be calculated from K with Eq. (2);
this is possible due to the clear relation between a

and K. According to Ogston’s diffusion model,
which is discussed below, a is also the parameter
that determines the retardation, D/D . This means0

that Ogston’s diffusion model can also be interpreted
as giving a relationship between the partition coeffi-
cient and the retardation coefficient.

In 1973 Ogston et al. proposed a model to
describe the restricted diffusion of large molecules in
fibrous structures [11]. The model is based on
Einstein’s stochastic model, which assumes that Fig. 6. The fit of Ogston’s diffusion model (Eq. (27)) (for
diffusion is a process in which molecules make steps definition of symbols see Fig. 5).
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same values for the parameters (f, r and r ) as inf s

the calculations for the partition coefficient. As can
be seen in Fig. 6 there is considerable scatter in the
data and the predictions can be very poor. In the next
two sections we propose two modifications to Og-
ston’s diffusion theory which will give better agree-
ment between theory and experiment.

4.3. Incorporating flexibilities into Ogston’s
diffusion model

Fig. 7. The fit of Ogston’s diffusion model modified with
As can be seen in Fig. 6, there is considerable flexibility factors (Eq. (28)); the bent line represents a linear

scatter in the data, however there are also some clear relationship between a and f f ln(D/D ). (For definition off s 0

symbols see Fig. 5).trends. Linear polymers show consistently higher
diffusion coefficients than proteins of the same
Stokes radius. Similar differences can be noticed
when different fibrous structures are considered. To ever there is not enough data to state any definite
take this into account we propose the introduction of relationship.
flexibility factors for the fiber and the solute, f andf

f , respectively. If either the solute or the fibers
4.4. Two diffusion regimes in Ogston’s diffusionflexibility increases, the chance that a step will
modelsucceed will increase. We assume that the average

distance traveled up to a collision increases with the
It is clear in Fig. 7 that at low values of a (,0.7),flexibility factor. Since Ogston’s theory assumes

in structures with little fiber, the theory of Ogston isrigid objects we chose to make the flexibility factor
not correct. Here it appears that ln(D/D ) is a linearfor rigid objects unity (we assume that proteins and 0

]Œfunction of a instead of a. Therefore we proposeagarose are rigid). When we incorporated this in Eq.
that the step size in large holes is not limited by the(25) we found (when we compared the new equation
size of the holes but that there is some limiting stepwith the data) that we still needed an empirical factor
size, l , which is related to the solute radius and theof 3. The reason for this is unknown, it might be due 0

fiber radius by a constant, s:to the increased friction between the solute and the
solvent which on its turn is caused by the fibers

l 5 s(r 1 r ) (29)0 s fhindering the solvent in its motion. The diffusion
coefficient then becomes: (We think that it would be better justified to relate l0

to the solute radius alone, however, this leads to] ]Œ ŒD 2 3r pl 2 3 a more scatter in the data). The effective step size is] ]]] ]]]5 exp 5 exp (28)S D S DD f f f f0 f s f s then the smallest of the hole size (Eq. (26)) and the
limiting step size (Eq. (29)). A convenient empirical

The effect of introducing the flexibility factors can formula is:
be seen when Figs. 6 and 7 are compared: the
consistent differences between the groups have dis-
appeared; the scatter within the groups remains of

Table 3course. The fitted flexibility factors are given in
Fitted parameters needed in Eqs. (28) and (31)Table 3. The nature of the flexibility factors is
f 1 f 2unknown to us, that of the fibers may be related to f,agarose s,linear polymers

f 1.5 f 1f,sephadex s,proteinsthe fiber radius, r , to the real fiber thickness or tof
f 2.25 s 7f,polyacrylamidethe persistence length of the polymer chains, how-
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1
]]]]]]a 5 lnd S D1 2 f 2 f 2O ff i j j

32 r 1 rr 1 r i ji f
]] ]]f 1 8f 1O fS D S Df i j jr rf j

]]]]]]]]]]]]3
f 1 f 1O ff i j j

(32)

For the flexibility factor we propose a weighted
average of the flexibility factors. Since obstacles

Fig. 8. The fit of Ogston’s diffusion model modified with with lower flexibility factors are more important in
flexibility factors and a maximum step length (Eq. (31)), X on the the retardation we propose:
vertical axis represents:
]]]]]

2 2f f 2 1f s
] ] ]S D 1S D . f 1 f 1O ff i j jœ 3 s a

]]]]]f 5 (33)d f fff j(for definition of symbols see Fig. 5). i
] ] ]1 1O jf f ff i j

If there are small non-fixed obstacles among the]22 22 2Œl 5 (s(r 1 r )) 1 (0.5 pl) (30)s f obstacles, the flexibility factors of these obstacles
may have to be increased since they can easily be

The final result is Eq. (31) and the fit with the data is moved by the solute and therefore offer less resist-
seen in Fig. 8. The fitted constants are given in Table ance to diffusion. Since next to nothing is known
3. about the retardation of diffusion in these compli-

cated systems we are unable to test this extension of]]]]]]D a the model.] ]]]]]]5 exp 2 (31)2 2D f f 2 10 f s3 4S]D ] ]S D1œ 3 s a

4.6. Discussion
The effect of introducing this limiting step size is
seen in comparing Figs. 7 and 8 at low a : the fit is Besides Ogston’s diffusion model other models
much better. The scatter has not changed because the have been proposed that can explain the retardation
same data points are used. of diffusion in fibrous structures. In this paragraph

we discuss the important ones.
In Ogston’s model only the effect of obstruction

4.5. Extending Ogston’s diffusion model to more on the diffusion coefficient is considered. Another
complicated systems model that also incorporates only obstruction effects

is the model by Johansson et al. [10]. Their result for
We would like to suggest an extension of Eq. (31) stiff fibers (their Eq. (7)) can be approximated

to systems with higher concentrations and cosolutes. closely by:
We propose that a should be replaced by an ad

D(subscript d for diffusion), and f by an f , represent- 20.72af d ]5 e (34)ing all the objects that can hinder the diffusion. For D0

a we propose that one should use the a that oned

would find for the partitioning at infinite dilution This gives a result comparable to our result for
between the bulk and a system of fibers, fixed solutes fibrous structures with large holes, although the
and fixed cosolutes: factor 0.72 is too small. It seems to us that their Eq.
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(4), for the retardation in a cylindrical cell, is not 4.7. Symbols
valid in fibrous structures with small holes.

It has also been suggested that the additional c mobile phase concentration, mol / l or g / l
hydrodynamic friction caused by the fibers can c mobile phase concentration coming intoin

explain the retardation. The fibers around the solute a ‘‘tank’’, mol / l or g / l
2restrict the solvent in its motion, which leads to an D diffusion coefficient, m /s

2increased friction between the solute and the solvent. D diffusion coefficient in free solution, m /0

On this basis Phillips et al. [12] suggested that s
Brinkman’s equation can be used: d particle diameter, mp

K partition coefficient, –
] 212 2 k liquid side mass transfer coefficient, m/sr rD ls sF G] ] ]5 1 1 1 (35) k particle side mass transfer coefficient,œD k 3k p0

m/s
where k is the permeability of the fibrous structure. L bed length, m

22This approach is called the effective medium model. l fiber length per volume, m
Based on the data collected by Jackson and James L length of a ‘‘tank’’, mtank

2[22] k can be estimated by k 5 0.5r /f and it MT mass transfer per particle volume, mol / sf
2 3follows that r /k ¯ 2a. The equations of Phillips et ms

23 21al. [12] and Ogston et al. [11] then give approximate- N Avogadro’s constant, 6.02?10 molA
3ly the same retardation. In this model the effect of q stagnant phase concentration, mol /m

fiber flexibility may already be accounted for in the R gas constant, 8.314 J /mol K
permeability, this is not known. The effect of solute r sum of radius of fiber and solute (r 5

flexibility may be accounted for by changing the r 1 r ), mf s

effective solute radius. T temperature, K
Finally it has been suggested by Johnson et al. t elution time of peak top, s100

[17] that the retardation by obstruction (Eq. (27)) t time at which the eluted peak height is50,↑
and by additional friction (Eq. (35)) should be 50 percent of the maximum and peak
multiplied. height is increasing, s

Since Ogston’s model, the effective medium t time at which the eluted peak height is50,↓
model and the multiplication of the results of these 50 percent of the maximum and peak
two models have approximately the same depen- height is decreasing, s
dence on a it seems to us that the preference for one v superficial liquid velocity, m/ssup

of them should be based on their theoretical sound- a dimensionless number defined by Eq.
ness, on practical considerations (is the permeability (23), –

2known?), or on someones taste. We think Ogston’s h viscosity, N s /m
model is the most elegant one.

Finally it must be said that the results of our own
measurements are not very well described by Og- References
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